Confab Documentation
Release 1.1.1

locationlabs and contributors

2013-05-21

CONTENTS

1 Contents 3
L1 Usage . . . o o o e e e e e e e 3
1.2 Loading Roles, Environments, and Hosts 4
1.3 Configuration Data e e e e e e e e e e 5
L4 Templates o o e e e e e e e e e e e e e e e 5
1.5 Tasks . . . o o e e e 5
L6 Glossary e 6
1.7 APIReference e 6
1.8 Future Work e e e e e e 12
1.9 Change History o o i e e e e e e e e e e e e e e e 13
2 Indices and tables 15
Python Module Index 17

Confab Documentation, Release 1.1.1

Configuration Management with Fabric and Jinja2.

CONTENTS 1

http://docs.fabfile.org/en/1.6/
http://jinja.pocoo.org/docs/

Confab Documentation, Release 1.1.1

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Quickstart

1. Install confab:

pip install confab

2. Create a settings.py file:

cat > settings.py << "EOEF"
environmentdefs = {
"local’: ["localhost’]

roledefs = {
"example’: [’localhost’]

}
EOF

3. Create a template:

mkdir -p templates/example/tmp/
echo " {{ value }}’ > templates/example/tmp/hello.txt

4. Create data to populate the template:

mkdir -p data
echo ’'value = "world"’ > data/default.py

5. Review the difference between the template value and the value on the target host:

confab diff

6. Push changes to the target host:

confab push

7. Review the change:

ssh localhost cat /tmp/hello.txt

1.2 Functions

Confab provides four basic functions:

Confab Documentation, Release 1.1.1

1. It defines a data model where /0sts belong to one or more environments and are assigned to one or more roles,
which can be made up of components.

2. It defines a mechanism for loading configuration data based on a set of defaults and override values defined per
environment, host, role, or component.

3. It defines a mechanism for loading Jinja2 templates for configuration files based on a role and/or component.

4. Tt defines Fabric tasks to faciliate publishing configuration files generated from applying the configuration data
to the Jinja2 templates to /osts.

Confab’s configuration data and Templates are expected to be checked in to version control so that changes to config-
uration are managed through a regular versioning and release process.

1.3 Tasks

Confab provides four default tasks:

generate Generate configuration files from templates.

pull Pull copies of configuration files from a remote host.

diff Show differences between generated and remote configuration files.
push Interactively push generated configuration files to a remote host.

The default tasks all expect a series of Directories as inputs.

1.4 Usage

Confab may be used in several ways.

1.4.1 Via confab — The Default Console Script

The distribution ships with the confab console script, which provides a simple command line usage based on com-
mon defaults:

confab -d /path/to/directory -H hosts -u user <command>

1.4.2 Via Inclusion in a fabfile
Confab’s tasks may be included in another fabfile simply by adding:
from confab.api import diff, generate, generate_tasks, pull, push

generate environment tasks
generate_tasks (' /path/to/settings’)

And then running:

fab <env_name>:{rolel}, {role2} <task>:<arguments>

Note that the settings path, roles list, and arguments are optional.

4 Chapter 1. Contents

http://jinja.pocoo.org/docs/
http://docs.fabfile.org/en/1.6/
http://jinja.pocoo.org/docs/

Confab Documentation, Release 1.1.1

1.4.3 Via the API

Confab’s lower level API can be invoked directly either to create new tasks or as part of some other script:

from confab.api import =«
from confab.autotasks import generate_tasks

load roledefs and environmentdefs from settings.py
load_model_from_dir (’ /path/to/directory’)

create tasks for each defined role and environment
generate_tasks ()

Autotasks would then allow fab to run as:

fab role_{role} env_{environment} <task>:arguments

Confab’s lower level API can also be invoked using customized data loading functions, either to create new tasks or to
be called directly from a new console script.

1.5 Directories

Confab loads all of its definitions, generates Templates, and saves remote copies of configuration files in locations
relative to a single base directory.

A normal Confab directory tree might look like:

definitions

templates for {component}

default configuration data

per—-environment configuration data

per-role configuration data

per—component configuration data

per-host configuration data

generated configuration files for hostname

copies of remote configuration files from hostname

base_dir/settings.py
base_dir/templates/{component}/
base_dir/data/default.py
base_dir/data/{environment}.py
base_dir/data/{role}.py
base_dir/data/{component}.py
base_dir/data/{host}.py
base_dir/generated/{hostname}/
base_dir/remotes/{hostname}/

HH= FH= = o

Confab selects this base directory in one of several ways:
1. By default, the base directory is the same directory where settings.py was loaded.

Both the confab console script and the generate_tasks () function load settings.py and construct
anEnvironmentDefinition, which retains a reference to the directory where settings . py was loaded.
This definition is saved in the Fabric environment as env.environmentdef for use by subsequent tasks.

2. Thediff (), generate (),pull (), and push () tasks support an explicit directory argument.
3. If all else fails, Confab falls back to os.getcwd ().

1.6 Templates

Confab uses Jinja2’s environment to enumerate configuration file templates. Any valid Jinja2 environment
may be provided as long as it uses a Loader that supports jinja2.Environment.list_templates (). By
default, Confab uses a jinja2.FileSystemLoader.

Templates are loaded from a directory tree based on the selected component(s). For example, given the following
directory structure:

1.5. Directories 5

http://jinja2.readthedocs.org/en/latest/api.html#jinja2.Environment
http://jinja2.readthedocs.org/en/latest/api.html#jinja2.Environment.list_templates
http://jinja2.readthedocs.org/en/latest/api.html#jinja2.FileSystemLoader

Confab Documentation, Release 1.1.1

/path/to/base_dir/templates/foo/etc/motd.tail
/path/to/base_dir/templates/foo/etc/hostname
/path/to/base_dir/templates/bar/etc/cron.d/baz

If the foo component is selected, /etc/motd.tail and /etc/hostname will be loaded; if the bar component
is selected, only /etc/cron.d/baz will be loaded. Note that configuration file names and paths may also be
templates.

1.7 Data Loading

Configuration data is loaded from python modules named after the selected environment, role, component, and host,
plus a standard set of defaults. For example, if Confab is operating on an environment named foo, a role named bar,
a component named baz, and a host named host, configuration data would be loaded from foo.py, bar.py,
baz.py, host.py,and default.py.

If a configuration data module is not found, Confab will also look for a file with a . py_tmp1 suffix and treat it as a
Jinja2 template for the same module, allowing configuration data to use Jinja2 template syntax (including include).

Confab uses the ___dict__ property of the loaded module to generate dictionaries, filtering out any entries starting
with _. In other words, this module:

foo = "bar’
_ignore = ’this’
results in this dictionary:
{"foo’: "bar’}
The dictionaries from all of the loaded modules (if any) are recursively merged into a single dictionary, which is then
used to populate Templates. Merging operates in the following order:
1. Host-specific values are used first.
2. Environment-specific values are used next.
3. Role or component-specific values are used next.
4. Default values are used last.

Confab’s recursive merge operation can be futher customized by using callable wrappers around configuration val-
ues. Confab will always delegate to a callable to define how values are overriden, e.g. allowing lists values to be
appended/prepended to default values.

1.8 Glossary

component Components are slices of configuration files.

The configuration files that Confab manages are controlled by which components are selected.
confab confab (in all lowercase) is an included command line script.

For details see Via confab — The Default Console Script.
environment Environments are groups of /0sts that work together for a single purpose.

It’s common to have one environment for development, one for staging, one for production and so forth.

6 Chapter 1. Contents

http://jinja2.readthedocs.org/en/latest/extensions.html#jinja2.nodes.Include

Confab Documentation, Release 1.1.1

host Hosts are physical or virtual machines accessible via ssh.
Confab will normally identify hosts by their fully qualified domain name (FQDN), so hostnames matter.
role Roles are groups of zero or more components that achieve a common purpose.

In the degenerate case where a role has no components, the role itself is taken to be a component.

1.9 API Reference

1.9.1 confab.api

Non-init module for doing convenient * imports from.

Core

e ConfFiles

Settings

* Settings

Environment Tasks

* generate_tasks ()

Jinja2 Environment Loading
e FileSystemEnvironmentLoader
* PackageEnvironmentLoader
Data Loading

* DataLoader

Options

* Options

* assume_yes ()
Iterations

e iter_hosts_and_roles ()
e iter_conffiles()

* make_conffiles ()

1.9. API Reference 7

Confab Documentation, Release 1.1.1

Fabric Tasks

e diff ()
* generate ()
* pull()

* push()

1.9.2 confab.autotasks

Auto-generate Fabric tasks for roles and environments.

The autogenerate_tasks () function creates fabric tasks to set the current role or :term‘environment‘ and is
intended to be used along side the other standard Confab tasks (e.g. pull ()) to customize configuration data.

These tasks are somewhat experimental.

confab.autotasks.autogenerate_tasks ()
Autogenerate role_ and env__ tasks for all defined roles and environments in the Fabric environment.

Normally the roledefs and environment defs will be configured using
confab.model.load _model from_dir () or similar.

1.9.3 confab.conffiles

Configuration file template object model.

class confab.conffiles.ConfFile (template, data)
Bases: object

Encapsulation of a configuration file template.

diff (generated_dir, remotes_dir, output=False)
Compute the diff between the generated and remote files.

If output is enabled, show the diffs nicely.

generate (generated_dir)
Write the configuration file to the dest_dir.

pull (remotes_dir)
Pull remote configuration file to local file.

push (generated_dir)
Push the generated configuration file to the remote host.

class confab.conffiles.ConfFileDiff (remote_file_name, generated_file_name, conffile_name)
Bases: object

Encapsulation of the differences between the (locally copied) remote and generated versions of a configuration
file.

show ()
Print the diff using pretty colors.

If confab is used on binary files, diffs are likely to render poorly.

8 Chapter 1. Contents

Confab Documentation, Release 1.1.1

class confab.conffiles.ConfFiles (environment_loader, data_loader)
Bases: object

Encapsulation of a set of configuration files.

diff (generated_dir, remotes_dir)
Show diffs for all configuration files.

generate (generated_dir)
Write all configuration files to generated_dir.

pull (remotes_dir)
Pull remote versions of files into remotes_dir.

push (generated_dir, remotes_dir)
Push configuration files that have changes, given user confirmation.

1.9.4 confab.data

Functions for loading configuration data.

class confab.data.DataLoader (data_dir)
Bases: object

Load and merge configuration data.

Configuration data is loaded from python files by type, where type is defined to include defaults, per-role values,
per-component values, per-environment values and per-host values.

Configuration data also includes the current environment and host string values under a confab key.

confab.data.import_configuration (module_name, data_dir)
Load configuration from file as python module.

Returns publicly names values in module’s __dict__.

1.9.5 confab.diff

Determine the difference between remote and generated configuration files.

confab.diff.diff
Show configuration file diffs.

1.9.6 confab.generate

Generate configuration files into generated_dir.

confab.generate.generate
Generate configuration files.

1.9.7 confab.loaders

Jinja2 Environment loading helper functions.

Confab uses the environments jinja2.Environment.list_templates () method to abstract template loca-
tion from rendering and synchronization.

Note that the default Jinja2 Loaders assume a charset (default: utf-8).

1.9. API Reference 9

http://jinja2.readthedocs.org/en/latest/api.html#jinja2.Environment.list_templates

Confab Documentation, Release 1.1.1

class confab.loaders.ConfabFileSystemLoader (searchpath, encoding="utf-8’)
Bases: jinja2.loaders.FileSystemLoader

Adds support for binary templates when loading an environment from the file system.

Binary config files cannot be loaded as Jinja2 templates by default, but since confab’s model is built around
Jinja2 environments we need to make sure we can still represent them as Jinja2 Templates.

Since confab only renders templates from text config files (see confab.conffiles.Conffile.generate ()
and confab.options.should_render ()) we can workaround this by returning a dummy template
for binary config files with the appropriate metadata. When generating the configuration, confab, instead of
rendering the template, will just copy the template file (the binary config file) verbatim to the generated folder.

class confab.loaders.EmptyLoader
Bases: jinja2.loaders.Baseloader

Jinja template loader with no templates.

class confab.loaders.FileSystemEnvironmentLoader (dir_name)
Bases: object

Loads Jinja2 environments from directories.

class confab.loaders.PackageEnvironmentLoader (package_name, tem-

plates_path="templates’)
Bases: object

Loads Jinja2 environments from python packages.

1.9.8 confab.main

Main function declaration for confab console_script.

Confab may be used from within a fabfile or as a library. The main function here is provided as a simple default way
to invoke confab’s tasks:

* A single directory root is assumed, with templates, data, generated and remotes directories defined as subdirec-
tories.

* A host list must be provided on the command line.
For more complex invocation, a custom fabfile may be more appropriate.

confab.main.main ()
Main command line entry point.

confab.main.parse_options ()
Parse command line options.

Directory and host are required, though directory defaults to the current working directory.

1.9.9 confab.merge

Configuration data structure merging functions.

We expect to obtain hierarchical configurations as native dictionaries and want to merge the higher precedence (over-
ride) data into the lower precedence (default) data, potentially multiple times.

Merge rules are as follows:

* Dictionaries are merged recursively by default.

10 Chapter 1. Contents

Confab Documentation, Release 1.1.1

* Lists and primitives are replaced by default.
» Callables are called to provide custom extension.

For example, a list of hosts in the default dictionary will normally be replaced by values defined in the override
dictionary; however if the override dictionary’s list is a callable, it can be made to do something else, such as append
a new host to the default list.

class confab.merge .Append (*args)
Bases: 1ist

Customized callable list that appends its values to the default.

class confab.merge .Prepend (*args)
Bases: 1ist

Customized callable list that prepends its values to the default.

class confab.merge.UniqueUnion (*args)
Bases: 1ist

Customized callable list that adds its values to the default list preserving unique values.

confab.merge.merge (*args)
Recursively merge multiple dictionaries.

1.9.10 confab.model

Functions for interacting with the defined hosts, environments, and roles.

confab.model.get_components_for_role (role)
Get all component paths for the given role.

confab.model.get_hosts_for_environment (environment)
Get all hosts for an environment.

Assumes an environmentsdef structure in Fabric’s env.

confab.model.get_roles_for_host (host)
Get all roles that a host belongs to.

Delegates to Fabric’s env roledefs.

confab.model.load model_ from_ dict (settings)
Load model data (environments, roles, hosts) from settings dictionary.

confab.model.load_model_from_dir (dir_name, module_name="settings’)
Load model data (environments, roles, hosts) from settings module.

1.9.11 confab.options

Options for managing Confab.

class confab.options.Options (**kwargs)
Bases: object

Context manager to temporarily set options.

confab.options.assume_yes
Set the option to assume_yes in other tasks.

1.9. API Reference 11

Confab Documentation, Release 1.1.1

1.9.12 confab.output

Output control utilities.

confab.output.configure_output (verbosity=0, quiet=False)
Configure verbosity level through Fabric’s output managers.

confab.output .debug (message, **kwargs)
Generate fabric-style output if and only if debug output has been selected.

confab.output.status (message, **kwargs)
Generate fabric-style output if and only if status output has been selected.

confab.output .warn_via_fabric (message, category, filename, lineno=None, line=None)
Adapt Python warnings to Fabric’s warning output manager.

1.9.13 confab.pull

Pull configuration files from remote host into remotes_dir.

confab.pull.pull
Pull remote configuration files.

1.9.14 confab.push

Push generated configuration files to remote host.

confab.push.push
Push configuration files.

1.9.15 confab.resolve

Resolve environment, role, and host choices into actions.

If a user specifies only an environment, confab should target all hosts and roles in that environment. If one or more
roles — or one or more hosts — are specified explicilty, confab should target a subset.

confab.resolve.resolve hosts_and_roles (environment, hosts=None, roles=None)
Given an environment, (possibly empty) list of hosts, and a (possibly empty) list of roles, return a mapping from
host to roles to target.

Raises an exception if any targeted host would have no roles after resolution.

1.9.16 confab.validate

Functions for validating user input to tasks.

confab.validate.validate_all (templates_dir, data_dir, generated_dir, remotes_dir)
Validate templates_dir, data_dir, generated_dir, remotes_dir, and host.

confab.validate.validate_data_dir (data_dir)
Data directory must be defined and exist.

confab.validate.validate_generate (templates_dir, data_dir, generated_dir)
Validate templates_dir, data_dir, generated_dir, and host.

12 Chapter 1. Contents

Confab Documentation, Release 1.1.1

confab.validate.validate_generated_dir (generated_dir)

Generated directory must be defined and not be a regular file.

confab.validate.validate_host ()

Fabric host_string must be defined.

confab.validate.validate_pull (templates_dir, data_dir, remotes_dir)

Validate templates_dir, data_dir, remotes_dir, and host.

confab.validate.validate_remotes_dir (remotes_dir)

Remotes directory must be defined and not be a regular file.

confab.validate.validate_templates_dir (femplates_dir)

1.1

1.

1.1

Template directory must be defined and exist.

0 Future Work

Confab needs a better push command line interface, and the following is a possible option:

The following configuration files have changed for localhost:

no | filename | changed
___+ ___ + ________
1 | /etc/iptables.rules | new

2 | /etc/iptables.rules.services | yes

3 | /opt/wm/etc/sprint_sms_gateway/gateway.properties | no

Select files to push? [all/None/..1,2..] 1,3

Similarly diff should offer a similar option to select files to show diffs:

The following configuration files have changed for localhost:

no | filename | changed
o e
1 | /etc/iptables.rules | new

2 | /etc/iptables.rules.services | yes

3 | /opt/wm/etc/sprint_sms_gateway/gateway.properties | no

See changes for file(s)? [all/..1,2..] 1,3

1 Change History

1.11.1 1.3 - unreleased

Add Sphinx documentation with API docs. Publish on RTD.

Convert CHANGES . md to RST to make them nicely embeddable in the docs.

Replace the old README . md with a new README . rst that points to the documentation on RTD.

Add along_descriptionto setup.py to provide more info on PyPL

1.10

. Future Work

13

Confab Documentation, Release 1.1.1

1.11.2 1.2 - 2013-05-02

Major refactor of underlying data model:

Autogenerated env tasks to use with fab

definitions.py replaces model.py and resolve.py

Provides a simpler object and iteration model for navigation confab settings.

Moves host and role iteration out of main.py into iterconffiles function.
No prevents multiple roles/components from defining the same template on the same host.
Allows multiple loading of data from identically named files in different directories.
Ensures that role data may override component data.

Supports customized module_as_dict conversion.

1.11.3 1.1 - 2013-03-25

Allows roles to have components: components may have templates and may be reused across different roles,
with customization defined in role configuration data.

Abstracts template and data loading into callable objects to allow ConfFiles to load templates and data for
specific components.

Allows data modules to be templates (» . py_tmpl) as well as Python files (x . py).

Adds output verbosity control and more verbose output.

Instead of enforcing that all hosts have the same role when invoking the confab CLI, “does the right thing.”
Changes uses of run() to sudo() and always uses use_sudo when calling put().

Switches merge resolution order to respect environment configuration before role or component configuration.

14

Chapter 1. Contents

CHAPTER
TWO

* genindex
* modindex

INDICES AND TABLES

15

Confab Documentation, Release 1.1.1

16 Chapter 2. Indices and tables

C

confab.
confab.
.conffiles,’7

confab

confab.
confab.
confab.
confab.
confab.
confab.
confab.
confab.
.output, 11
confab.
confab.
confab.

confab

confab.

api, 6
autotasks, 7

data, 8
diff,8
generate, 8
loaders, 9
main, 9
merge, 10
model, 10
options, 11

pull, 11
push, 11
resolve, 11
validate, 12

PYTHON MODULE INDEX

17

	Contents
	Usage
	Loading Roles, Environments, and Hosts
	Configuration Data
	Templates
	Tasks
	Glossary
	API Reference
	Future Work
	Change History

	Indices and tables
	Python Module Index

